
GHC.Real  Portability  nonportable (GHC Extensions)  Stability  internal  Maintainer  cvsghc@haskell.org 





Description 
The types Ratio and Rational, and the classes Real, Fractional,
Integral, and RealFrac.


Synopsis 

data Ratio a = (:%) !a !a   type Rational = Ratio Integer   ratioPrec :: Int   ratioPrec1 :: Int   infinity :: Rational   notANumber :: Rational   (%) :: (Integral a) => a > a > Ratio a   numerator :: (Integral a) => Ratio a > a   denominator :: (Integral a) => Ratio a > a   reduce :: (Integral a) => a > a > Ratio a   class (Num a, Ord a) => Real a where    class (Real a, Enum a) => Integral a where    class (Num a) => Fractional a where    class (Real a, Fractional a) => RealFrac a where    numericEnumFrom :: (Fractional a) => a > [a]   numericEnumFromThen :: (Fractional a) => a > a > [a]   numericEnumFromTo :: (Ord a, Fractional a) => a > a > [a]   numericEnumFromThenTo :: (Ord a, Fractional a) => a > a > a > [a]   fromIntegral :: (Integral a, Num b) => a > b   realToFrac :: (Real a, Fractional b) => a > b   showSigned :: (Real a) => (a > ShowS) > Int > a > ShowS   even :: (Integral a) => a > Bool   odd :: (Integral a) => a > Bool   (^) :: (Num a, Integral b) => a > b > a   (^^) :: (Fractional a, Integral b) => a > b > a   gcd :: (Integral a) => a > a > a   lcm :: (Integral a) => a > a > a   integralEnumFrom :: (Integral a, Bounded a) => a > [a]   integralEnumFromThen :: (Integral a, Bounded a) => a > a > [a]   integralEnumFromTo :: (Integral a) => a > a > [a]   integralEnumFromThenTo :: (Integral a) => a > a > a > [a] 


Documentation 

data Ratio a 


type Rational = Ratio Integer 
Arbitraryprecision rational numbers, represented as a ratio of
two Integer values. A rational number may be constructed using
the % operator. 

ratioPrec :: Int 

ratioPrec1 :: Int 

infinity :: Rational 

notANumber :: Rational 

(%) :: (Integral a) => a > a > Ratio a 

numerator :: (Integral a) => Ratio a > a 

denominator :: (Integral a) => Ratio a > a 

reduce :: (Integral a) => a > a > Ratio a 

class (Num a, Ord a) => Real a where 


class (Real a, Enum a) => Integral a where 
 Methods  quot :: a > a > a   rem :: a > a > a   div :: a > a > a   mod :: a > a > a   quotRem :: a > a > (a, a)   divMod :: a > a > (a, a)   toInteger :: a > Integer 
  Instances  


class (Num a) => Fractional a where 
 Methods  (/) :: a > a > a   recip :: a > a   fromRational :: Rational > a 
  Instances  


class (Real a, Fractional a) => RealFrac a where 


numericEnumFrom :: (Fractional a) => a > [a] 

numericEnumFromThen :: (Fractional a) => a > a > [a] 

numericEnumFromTo :: (Ord a, Fractional a) => a > a > [a] 

numericEnumFromThenTo :: (Ord a, Fractional a) => a > a > a > [a] 

fromIntegral :: (Integral a, Num b) => a > b 

realToFrac :: (Real a, Fractional b) => a > b 

showSigned :: (Real a) => (a > ShowS) > Int > a > ShowS 

even :: (Integral a) => a > Bool 

odd :: (Integral a) => a > Bool 

(^) :: (Num a, Integral b) => a > b > a 

(^^) :: (Fractional a, Integral b) => a > b > a 

gcd :: (Integral a) => a > a > a 

lcm :: (Integral a) => a > a > a 

integralEnumFrom :: (Integral a, Bounded a) => a > [a] 

integralEnumFromThen :: (Integral a, Bounded a) => a > a > [a] 

integralEnumFromTo :: (Integral a) => a > a > [a] 

integralEnumFromThenTo :: (Integral a) => a > a > a > [a] 

Produced by Haddock version 0.4 